• ВСЕ, ЧТО ВЫ ХОТЕЛИ ЗНАТЬ О МОДЕМАХ, НО БОЯЛИСЬ СПРОСИТЬ •  

:: Модемы. Справочник пользователя ::

Публикуется с разрешения автора!
Автор: Лагутенко Олег Иванович, к.т.н.
Источник: http://laguten.chat.ru

ГЛАВА 1

ОСНОВЫ ТЕЛЕКОММУНИКАЦИЙ




1.1. Типовая система передачи данных

Любая система передачи данных (СПД) может быть описана через три основные свои компоненты. Такими компонентами являются передатчик (или так называемый "источник передачи информации"), канал передачи данных и приемник (также называемый "получателем" информации). При двухсторонней (дуплексной передаче) источник и получатель могут быть объединены так, что их оборудование может передавать и принимать данные одновременно. В простейшем случае СПД между точками А и В (рис. 1.1) состоит из следующих основных семи частей:

  • Оконечного оборудования данных в точке А.
  • Интерфейса (или стыка) между оконечным оборудованием данных и аппаратурой канала данных.
  • Аппаратуры канала данных в точке А.
  • Канала передачи между точками А и В.
  • Аппаратуры канала данных в точке В.
  • Интерфейса (или стыка) аппаратуры канала данных.
  • Оконечного оборудования данных в точке В.

Оконечное оборудование данных (ООД) — это обобщенное понятие, используемое для описания оконечного прибора пользователя или его части.

Типовая система передачи данных
Рис. 1.1 - Типовая система передачи данных:
а — блок-схема системы передачи данных;
б — реальная система передачи данных.

ООД может являться источником информации, ее получателем или тем и другим одновременно. ООД передает и (или) принимает данные посредством использования аппаратуры канала данных (АКД) и канала передачи. В литературе часто употребляется соответствующий международный термин — DTE (Data Terminal Equipment). Часто в качестве DTE может выступать персональный компьютер, большая ЭВМ (mainframe computer), терминал, устройство сбора данных, кассовый аппарат, приемник сигналов глобальной навигационной системы или любое другое оборудование, способное передавать или принимать данные.

Аппаратуру канала данных также называют аппаратурой передачи данных (АПД). Широко используется международный термин DCE (Data Communications Equipment), который и будем употреблять в дальнейшем. Функция DCE состоит в обеспечении возможности передачи информации между двумя или большим числом DTE по каналу определенного типа, например по телефонному. Для этого DCE должен обеспечить соединение с DTE с одной стороны, и с каналом передачи — с другой. На рис. 1.1, а DCE может являться аналоговым модемом, если используется аналоговый канал, или, например, устройством обслуживания канала/данных (CSU/DSU — Channel Seruis Unit/ Data Service Unit), если используется цифровой канал типа Е1/Т1 или ISDN. Модемы, разработанные в 60—70-х годах, представляли собой устройства исключительно с функциями преобразования сигналов. Однако в последние годы модемы приобрели значительное количество сложных функций, которые будут рассмотрены ниже.

Слово модем является сокращенным названием устройства, осуществляющего процесс МОдуляции/ДЕМодуляции.

Модуляцией называется процесс изменения одного либо нескольких параметров выходного сигнала по закону входного сигнала При этом входной сигнал является, как правило, цифровым и называется модулирующим. Выходной сигнал — обычно аналоговый и часто носит название модулированного сигнала В настоящее время модемы наиболее широко используются для передачи данных между компьютерами через коммутируемую телефонную сеть общего пользования (КТСОП, GTSN — General Switched Telefone Network).

Важную роль во взаимодействии DTE и DCE играет их интерфейс, который состоит из входящих/исходящих цепей в DTE и DCE, разъемов и соедини тельных кабелей. В отечественной литературе и стандартах также часто употребляется термин стык.

Соединение DTE с DCE происходит по одному из стыков типа С2. При подключении DCE к каналу связи или среде распространения применяется один из стыков типа С1.


1.2. Каналы связи

1.2.1. Аналоговые и цифровые каналы

Под каналом связи понимают совокупность среды распространения и технических средств передачи между двумя канальными интерфейсами или стыками типа С1 (см. рис. 1.1). По этой причине стык С1 часто называется канальным стыком.

В зависимости от типа передаваемых сигналов различают два больших класса каналов связи: цифровые и аналоговые.

Цифровой канал является битовым трактом с цифровым (импульсным) сигналом на входе и выходе канала. На вход аналогового канала поступает непрерывный сигнал, и с его выхода также снимается непрерывный сигнал (рис. 1.2). Как известно, сигналы характеризуются формой своего представления.

Цифровые и аналоговые каналы передачи
Рис. 1.2 - Цифровые и аналоговые каналы передачи

Параметры сигналов могут быть непрерывными или принимать только дискретные значения. Сигналы могут содержать информацию либо в каждый момент времени (непрерывные во времени, аналоговые сигналы), либо только в определенные, дискретные моменты времени (цифровые, дискретные, импульсные сигналы).

Цифровыми являются каналы систем ИКМ, ISDN, каналы типа Т1/Е1 и многие другие. Вновь создаваемые СПД стараются строить на основе цифровых каналов, обладающих рядом преимуществ перед аналоговыми.

Аналоговые каналы являются наиболее распространенными по причине длительной истории их развития и простоты реализации. Типичным примером аналогового канала является канал тональной частоты (КТЧ), а также групповые тракты на 12, 60 и более каналов тональной частоты. Телефонный канал КТСОП, как правило, включает многочисленные коммутаторы, устройства разделения, групповые модуляторы и демодуляторы. Для КТСОП этот канал (его физический маршрут и ряд параметров) будет меняться при каждом очередном вызове.

При передаче данных на входе аналогового канала должно находиться устройство, которое преобразовывало бы цифровые данные, приходящие от DTE, в аналоговые сигналы, посылаемые в канал. Приемник должен содержать устройство, которое преобразовывало бы обратно принятые непрерывные сигналы в цифровые данные. Этими устройствами являются модемы. Аналогично, при передаче по цифровым каналам данные от DTE приходится приводить к виду, принятому для данного конкретного канала. Этим преобразованием занимаются цифровые модемы, очень часто называемые адаптерами ISDN, адаптерами каналов Е1/Т1, линейными драйверами, и так далее (в зависимости от конкретного типа канала или среды передачи).

Термин модем используется широко. При этом необязательно подразумевается какая-либо модуляция, а просто указывается на определенные операции преобразования сигналов, поступающих от DTE для их дальнейшей передачи по используемому каналу. Таким образом, в широком смысле понятия модем и аппаратура канала данных (DCE) являются синонимами.


1.2.2. Коммутируемые и выделенные каналы

Коммутируемые каналы предоставляются потребителям на время соединения по их требованию (звонку). Такие каналы принципиально содержат в своем составе коммутационное оборудование телефонных станций (АТС). Обычные телефонные аппараты используют коммутируемые каналы КТСОП. Кроме того, коммутируемые каналы предоставляет цифровая сеть с интеграцией служб (ISDN — Integrated Services Digital Network).

Выделенные (арендованные) каналы арендуются у телефонных компаний или (очень редко) прокладываются самой заинтересованной организацией. Такие каналы являются принципиально двухточечными. Их качество в общем случае выше качества коммутируемых каналов по причине отсутствия влияния коммутационной аппаратуры АТС.


1.2.3. Двух- и четырехпроводные каналы

Как правило, каналы имеют двухпроводное или четырехпроводное окончание. Для краткости их называют, соответственно, двухпроводными и четырехпроводными.

Четырехпроводные каналы предоставляют два провода для передачи сигнала и еще два провода для приема. Преимуществом таких каналов является практически полное отсутствие влияния сигналов, передаваемых во встречном направлении.

Двухпроводные каналы позволяют использовать два провода как для передачи, так и для приема сигналов. Такие каналы позволяют экономить на стоимости кабелей, но требуют усложнения каналообразующей аппаратуры и аппаратуры пользователя. Двухпроводные каналы требуют решение задачи разделения принимаемого и передаваемого сигналов. Такая развязка реализуется при помощи дифференциальных систем, обеспечивающих необходимое затухание по встречным направлениям передачи. Неидеальность дифференциальных систем (а идеального ничего не бывает) приводит к искажениям амплитудно-частотных и фазо-частотных характеристик канала и к специфической помехе в виде эхо-сигнала.


1.3. Семиуровневая модель OSI

Для того, чтобы взаимодействовать, люди используют общий язык. Если невозможно разговаривать друг с другом непосредственно, применяются вспомогательные средства для передачи сообщений. Одним из таких средств является система почтовой связи (рис. 1.3). В ее составе можно выделить определенные функциональные уровни, например, уровень сбора и доставки писем из почтовых ящиков на ближайшие почтовые узлы связи и в обратном направлении, уровень сортировки писем в транзитных узлах, и т.д. Принятые в почтовой связи всевозможные стандарты на размеры конвертов, порядок оформления адресов и др. позволяют отправлять и получать корреспонденцию практически из любой точки Земного шара.

Функциональные уровни системы почтовой связи
Рис. 1.3 - Функциональные уровни системы почтовой связи

Похожая картина имеет место и в области электронных коммуникаций, где рынок компьютеров, коммуникационного оборудования информационных систем и сетей необычайно широк и разношерстен. По этой причине создание современных информационных систем стало невозможным без использования общих подходов при их разработке, без унификации характеристик и параметров их составных компонент.

Теоретическую основу современных информационных сетей определяет Базовая эталонная модель взаимодействия открытых систем (OSI — Open Systems Interconnection) Международной организации стандартов (ISO — International Standards Organization). Она описана стандартом ISO 7498. Модель является международным стандартом для передачи данных. Согласно эталонной модели взаимодействия OSI выделяются семь уровней, образующих область взаимодействия открытых систем (табл. 1.1).

Таблица 1.1 - Функции уровней модели взаимодействия открытых систем
Уровень Функции
7. Прикладной Интерфейс с прикладными процессами
6. Представительный Согласование представления и интерпретация передаваемых данных
5. Сеансовый Поддержка диалога между удаленными процессами;
обеспечение соединения и разъединения этих процессов;
реализация обмена данными между ними
4. Транспортный Обеспечение сквозного обмена данными между системами
3. Сетевой Маршрутизация;
сегментирование и объединение блоков данных;
управление потоками данных;
обнаружение ошибок и сообщение о них
2. Канальный Управление каналом передачи данных;
формирование кадров;
управление доступом к среде передачи;
передача данных по каналу;
обнаружение ошибок в канале и их коррекция
1. Физический Физический интерфейс с каналом передачи данных;
битовые протоколы модуляции и линейного кодирования

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль. Благодаря этому общая задача передачи данных расщепляется на отдельные конкретные задачи. Функции уровня, в зависимости от его номера, могут выполняться программными, аппаратными либо программно-аппаратными средствами. Как правило, реализация функций высших уровней носит программный характер, функции канального и сетевого уровней могут быть исполнены как программными, так и аппаратными средствами. Физический уровень обычно выполняется в аппаратном виде.

Каждый уровень определяется группой стандартов, которые включают в себя две спецификации: протокол и обеспечиваемый для вышестоящего уровня сервис. Под протоколом подразумевается набор правил и форматов, определяющих взаимодействие объектов одного уровня модели.

Наиболее близким к пользователю является прикладной уровень. Его главная задача — предоставить уже переработанную (принятую) информацию. С этим обычно справляется системное и пользовательское прикладное программное обеспечение, например, терминальная программа. При передаче информации между различными вычислительными системами должно применяться одинаковое кодовое представление используемых алфавитно-цифровых знаков. Другими словами, прикладные программы взаимодействующих пользователей должны работать с одинаковыми кодовыми таблицами. Количество представленных в коде знаков зависит от числа битов, используемых в коде, то есть от основания кода. Наибольшее распространение нашли коды, приведенные в табл. 1.2.

Таблица 1.2 - Основные характеристики распространенных знаковых кодов
Код Область применения Основание кода, бит Число знаков кода
BCD Цифровая информация 4 16
BAUDOT (MTK-5) Телеграфия 5 32
EBCD Большие ЭВМ (mainframe) 6 64
ASCII Мини- и микро-ЭВМ 7 128
EBCDI Большие и мини-ЭВМ 8 256

Часто используются всевозможные национальные расширения перечисленных кодов, например основная и альтернативная кодировки кириллицы для кода ASCII. В этом случае основание кода увеличивается до 8 бит.

Функции современных модемов относятся к наиболее далеким от пользователя уровням — физическому и канальному.


1.3.1. Физический уровень

Данный уровень определяет интерфейсы системы с каналом связи, а именно, механические, электрические, функциональные и процедурные параметры соединения. Физический уровень также описывает процедуры передачи сигналов в канал и получения их из канала. Он предназначен для переноса потока двоичных сигналов (последовательности бит), в виде, пригодном для передачи по конкретной используемой физической среде. В качестве такой физической среды передачи могут выступать канал тональной частоты, соединительная проводная линия, радиоканал или что-то другое.

Физический уровень выполняет три основные функции: установление и разъединение соединений; преобразование сигналов и реализация интерфейса.

Установление и разъединение соединения
При использовании коммутируемых каналов на физическом уровне необходимо осуществить предварительное соединение взаимодействующих систем и их последующее разъединение. При использовании выделенных (арендуемых) каналов такая процедура упрощается, так как каналы постоянно закреплены за соответствующими направлениями связи. В последнем случае обмен данными между системами, не имеющими прямых связей, организуется с помощью коммутации потоков, сообщений или пакетов данных через промежуточные взаимодействующие системы (узлы). Однако функции такой коммутации выполняются уже на более высоких уровнях и к физическому уровню отношения не имеют.

Кроме физического подключения взаимодействующие модемы могут также "договариваться" об устраивающем их обоих режиме работы, то есть способе модуляции, скорости передачи, режимах исправления ошибок и сжатия данных и т.д.

После установления соединения управление передается более высокому канальному уровню.

Преобразование сигналов
Для согласования последовательности передаваемых бит с параметрами используемого аналогового или цифрового канала требуется выполнить их преобразование в аналоговый либо дискретный сигнал, соответственно. К этой же группе функций относятся процедуры, реализующие стык с физическим (аналоговым или цифровым) каналом связи. Такой стык часто называется стыком, зависящим от среды и он может соответствовать одному из гостированных канальных стыков С1. Примерами таких стыков С1 могут быть: С1-ТФ (ГОСТы 23504-79, 25007-81, 26557-85) - для каналов КТСОП, С1-ТЧ (ГОСТы 23475-79, 23504-79, 23578-79, 25007-81, 26557-85) - для выделенных каналов тональной частоты, С1-ТГ (ГОСТ 22937-78) — для телеграфных каналов связи, С1-ШП (ГОСТы 24174-80, 25007-81, 26557-85) - для первичных широкополосных каналов, С1-ФЛ (ГОСТы 24174-80, 26532-85) - для физических линий связи, С1-АК — для акустического сопряжения DCE с каналом связи и ряд других.

Функция преобразования сигналов является главнейшей функцией модемов. По этой причине первые модемы, не обладавших интеллектуальными возможностями и не выполнявшие аппаратное сжатие и коррекцию ошибок, часто называли устройствами преобразования сигналов (УПС).

Реализация интерфейса
Реализация интерфейса между DTE и DCE является третьей важнейшей функцией физического уровня. Такого рода интерфейсы регламентируются соответствующими рекомендациям и стандартами, к которым, в частности, относятся V.24, RS-232, RS-449, RS-422A, RS-423A, V.35 и другие. Такие интерфейсы определяются отечественными ГОСТами как преобразовательные стыки С2 или стыками, не зависящими от среды.

Стандарты и рекомендации по интерфейсам DTE-DCE определяют общие характеристики (скорость и последовательность передачи), функциональные и процедурные характеристики (номенклатура, категория цепей интерфейса, правила их взаимодействия); электрические (величины напряжений, токов и сопротивлений) и механические характеристики (габариты, распределение контактов по цепям).

На физическом уровне происходит диагностика определенного класса неисправностей, например таких, как обрыв провода, пропадание питания, потеря механического контакта и т.п.

Типовой профиль протоколов при использовании модема, поддерживающего только функции физического уровня, приведен на рис. 1.4. При этом считается, что компьютер (DTE) соединяется с модемом (DCE) посредством интерфейса RS-232, а модем использует протокол модуляции V.21.

Профиль протоколов для модема с функциями только физического уровня
Рис. 1.4 - Профиль протоколов для модема с функциями только физического уровня

Помехозащищенность канала связи, состоящего из двух модемов и среды передачи между ними, является ограниченной и, как правило, не удовлетворяет требованиям, предъявляемым к достоверности передаваемых данных. По этой причине физический уровень рассматривается как ненадежная система. Задача исправления искаженных в канале передачи битов решается на более высоких уровнях, в частности, на канальном уровне.


1.3.2. Канальный уровень

Канальный уровень часто называют уровнем управления звеном данных. Средства этого уровня реализуют следующие основные функции:

  • формирование из передаваемой последовательности бит блоков данных определенного размера для их дальнейшего размещения в информационном поле кадров, которые и передаются по каналу;
  • кодирование содержимого кадра помехоустойчивым кодом (как правило, с обнаружением ошибок) с целью повышения достоверности передачи данных;
  • восстановление исходной последовательности данных на приемной стороне;
  • обеспечение кодонезависимой передачи данных с целью реализации для пользователя (или прикладных процессов) возможности произвольного выбора кода представления данных;
  • управление потоком данных на уровне канала, то есть темпа их выдачи в DTE получателя;
  • устранение последствий потерь, искажений или дублирования передаваемых в канале кадров.

В качестве стандарта для протоколов второго уровня организацией ISO рекомендуется протокол HDLC (High Level Data Link Control). Он получил в мире телекоммуникаций чрезвычайно широкое распространение. На основе протокола HDLC разработано множество других, являющихся по своей сути некоторой адаптацией и упрощением ряда его возможностей по отношению к конкретной области применения. К такому подмножеству HDLC относятся часто используемые протоколы SDLC (Synchronous Data Link Control), LAP (Link Access Procedure), LAPB (Link Access Procedure Balanced), LAPD (Link Access Procedure D-channel), LAPM (Link Access Procedure for Modems), LLC (Logical Link Network), LAPX (Link Access Procedure eXtention) и ряд других. Например, протоколы LAPB и LAPD применяются в цифровых сетях ISDN (Integrated Services Digital Network), LAPM является базовым для стандарта коррекции ошибок V.42, LAPX является полудуплексным вариантом HDLC и используется в терминальных сетях и системах, работающих в стандарте Teletex, а протокол LLC (Link Logic Control) реализован практически во всех сетях с множественным доступом (например, в беспроводных локальных сетях). На рис. 1.5 изображено семейство протокола HDLC и области его применения.

Семейство протокола HDLC
Рис. 1.5 - Семейство протокола HDLC

Возможный профиль протоколов для модема, поддерживающего функции физического и канального уровней, представлен на рис. 1.6. Считается, что компьютер соединяется с модемом посредством интерфейса RS-232, и уже модем реализует протокол модуляции V.34 и аппаратную коррекцию ошибок согласно стандарта V.42.

Профиль протоколов для модема с функциями физического и канального уровней
Рис. 1.6 - Профиль протоколов для модема с функциями физического и канального уровней

В некоторых сетях, основанных на каналах с многоточечным подключением, сигнал, принимаемый каждым DCE, является суммой сигналов, передаваемых от целого ряда других DCE Каналы связи в таких сетях называют каналами с множественным доступом или моноканалами, а сами сети называют сетями множественного доступа. Такими сетями являются некоторые спутниковые сети, наземные пакетные радиосети, а также локальные проводные и беспроводные сети.

Соответствующие уровни модели OSI при передаче в режиме множественного доступа несколько отличны от тех, что используются в СПД с двухточечными каналами. Второй уровень должен обеспечить верхние уровни виртуальным каналом для безошибочной передачи пакетов, а физический уровень должен предоставить битовый тракт. Появляется необходимость в промежуточном уровне для управления каналом с множественным доступом таким образом, чтобы из каждого DCE можно было передавать кадры без постоянных конфликтов с остальными DCE. Этот уровень называется уровнем управления доступом к среде передачи MAC (Medium Access Control). Обычно его считают первым подуровнем уровня 2, т.е. уровнем 2.1. Традиционный канальный уровень в этом случае превращается в уровень управления логическим каналом LLC (Logical Link Control) и является подуровнем 2.2. На рис. 1.7 показана взаимосвязь второго уровня и подуровней LLC и MAC.

17.jpg
Рис. 1.7 - Профиль протоколов для DCE с множественным доступом



1.4. Факсимильная связь

1.4.1. Передача факсимильного изображения

Факсимильная связь является видом документальной связи, предназначенной для передачи не только содержания, но и внешнего вида самого документа. Сущность факсимильного метода передачи состоит в том, что передаваемое изображение (оригинал) разбивается на отдельные элементарные площадки, которые сканируются со скоростью развертки 60, 90, 120, 180 или 240 строк/мин. Сигнал яркости пропорциональный коэффициенту отражения таких элементарных площадок преобразуется в цифровой вид и передается по каналу связи с использованием того либо иного способа модуляции. На приемной стороне эти сигналы преобразуются в элементы изображения и воспроизводятся (записываются) на приемном бланке.

Структурная схема факсимильной связи приведена на рис. 1.8. Изображение (оригинал), подлежащее передаче, подвергается сканированию световым пятном требуемых размеров. Пятно формируется светооптической системой, содержащей источник света и оптическое устройство. Перемещение пятна по поверхности оригинала осуществляется развертывающим устройством (РУ). Часть светового потока, падающего на элементарную площадку оригинала, отражается и поступает на фотоэлектрический преобразователь (ФП), в котором происходит его преобразование в электрический видеосигнал. Амплитуда видеосигнала на выходе фотопреобразователя пропорциональна величине отраженного светового потока. Далее видеосигнал поступает на вход аналого-цифрового преобразователя (АЦП), где преобразуется в цифровой код. С выхода АЦП цифровой код поступает на вход устройства преобразования сигналов (УПС), то есть модулятора, где посредством использования одного из протоколов модуляции спектр цифрового видеосигнала переносится в область частот используемого канала связи.

Структурная схема факсимильной связи
Рис. 1.8 - Структурная схема факсимильной связи

При приемной стороне приходящий из канала связи модулированный сигнал последовательно поступает в УПС и ЦАП для демодуляции и цифро-ана-логового преобразования, соответственно. Далее видеосигнал поступает в воспроизводящее устройство (ВУ), где в результате действия развертывающего устройства на бланке воспроизводится копия переданного изображения. Процесс получения конечной факсимильной копии обратный процессу сканирования носит название репликации. Для обеспечения синхронности и синфазности разверток на передающей и приемной сторонах используются устройства синхронизации (УС).

Таким образом, аппарат факсимильной связи (факс) очень напоминает ксерокс, в котором оригинал и копию разделяют многие километры.

Современные факс-модемы имеют в своем составе все составные части факсимильных аппаратов за исключением сканирующего и воспроизводящего устройств. Они "умеют" связываться с обыкновенными факсами, при этом принимаемая информация о передаваемом изображении выдается на компьютер, где программой передачи факсимильных сообщений преобразуется в один из распространенных графических форматов. В дальнейшем, полученный таким образом документ, можно отредактировать, вывести на принтер или передать другому корреспонденту, имеющему факс или компьютер с факс-модемом.


1.4.2. Стандарты факсимильной связи

Согласно рекомендациям Сектора Стандартизации Международного Союза Электросвязи (ITU-T — International Telecommunications Union — Telecommunications) в зависимости от используемого вида модуляции различают факсы четырех групп. Первые факсимильные стандарты, относящиеся к группе 1, были основаны на аналоговом методе передачи информации. Страница текста факсами группы 1 передавалась за 6 минут. Стандарты группы 2 усовершенствовали эту технологию в направлении увеличения скорости передачи, в результате чего время передачи одной страницы сократилось до 3 минут.

Стандарт на факсы группы 3 изначально был определен рекомендацией ITU-Т Т.4 1980 года. Этот стандарт был дважды переиздан — первый раз в 1984 г. и затем в 1988 г. В модификации этого стандарта от 1990 г. были одобрены схемы кодирования, разработанные для факсимильных аппаратов группы 4, а также более высокие скорости передачи, определяемые стандартами V.17, V.29 и V.33. Радикальное отличие факсаппаратов группы 3 от более ранних заключается в полностью цифровом методе передачи со скоростями до 14400 бит/с. В результате, применяя сжатие данных, факс группы 3 передает страницу за 30—60 с. При ухудшении качества связи факсы группы 3 переходят в аварийный режим, замедляя скорость передачи. Согласно стандарту группы 3 возможны две степени разрешения: стандартное, обеспечивающее 1728 точек по горизонтали и 100 точек/дюйм по вертикали; и высокое, удваивающее количество точек по вертикали, что дает разрешение 200х200 точек/дюйм и вдвое уменьшает скорость.

Факсимильные аппараты первых трех групп ориентированы на использование аналоговых телефонных каналов КТСОП. В 1984 году ITU-T принял стандарт группы 4, который предусматривает разрешение до 400х400 точек/дюйм и повышение скорости при более низком разрешении. Факсы группы 4 дают разрешение очень высокого качества. Однако, они нуждаются в высокоскоростных каналах связи, которые могут предоставить сети ISDN, и не могут работать через каналы КТСОП.

Практически все продаваемые в настоящее время факсы основаны на стандарте группы 3. Рис. 1.8 иллюстрирует работу именно таких факсов.


1.5. Управление потоком

1.5.1. Необходимость управления потоком

В любой системе либо сети передачи данных возникают ситуации, когда поступающая в сеть нагрузка превышает возможности по ее обслуживанию. В этом случае, если не предпринимать никаких мер по ограничению поступающих данных (трафика), размеры очередей на линиях сети будут неограниченно расти и в конце концов превысят размеры буферов соответствующих средств связи. Когда это происходит, единицы данных (сообщения, пакеты, кадры, блоки, байты, символы), поступающие в узлы, для которых нет свободного места в буфере, будут сброшены и позднее переданы повторно. В результате возникает эффект, когда при увеличении поступающей нагрузки реальная пропускная способность уменьшается, а задержки передачи становятся чрезвычайно большими.

Средством борьбы с такими ситуациями выступают методы управления потоком, суть которых заключается в ограничении поступающего трафика для предотвращения перегрузок.

Схема управления потоком может понадобиться на участке передачи между двумя пользователями (транспортный уровень), между двумя узлами сети (сетевой уровень), между двумя соседними DCE, обменивающимися данными по логическому каналу (канальный уровень), а также между терминальным оборудованием и аппаратурой канала данных, взаимодействующих по одному из интерфейсов DTE—DCE (физический уровень).

Схемы управления потоком транспортного уровня реализованы в протоколах передачи файлов, таких как ZModem; схемы управления потоком сетевого уровня — в составе протоколов Х.25 и TCP/IP; схемы управления потоком канального уровня — в составе протоколов повышения достоверности, таких как MNP4, V.42; управление потоком на физическом уровне реализуется в рамках набора функций соответствующих интерфейсов, таких как RS-232. Перечисленные три уровня схем управления имеют непосредственное отношение к аппаратному и программному обеспечению модемов и их конкретные реализации будут рассмотрены в соответствующих разделах книги.


1.5.2. Метод окна

Рассмотрим часто используемый протоколами канального, сетевого и транспортного уровней класс методов управления потоком, названный оконным управлением потоком. Под окном понимается наибольшее число информационных единиц, которые могут оставаться неподтвержденными в данном направлении передачи.

В процессе передачи между передатчиком и приемником используется оконное управление, если установлена верхняя граница на число единиц данных, которые уже переданы передатчиком, но на которые еще не получено подтверждение от приемника. Верхняя граница в виде целого положительного числа и является окном или размером окна. Приемник уведомляет передатчик о том, что к нему попала единица данных путем отправления специального сообщения к приемнику (рис. 1.9). Такое сообщение называется подтверждением, разрешением или квитанцией. Подтверждение может быть положительным — АСК (ACKnowledgement), сигнализирующим об успешном приеме соответствующей информационной единицы, и отрицательным — NAK (Negative AcKnowledgement), свидетельствующим о неприеме ожидаемой порции данных. После получения квитанции передатчик может передать еще одну единицу данных приемнику. Число квитанций, находящихся в использовании, не должно превышать размер окна.

Оконное управление потоком
Рис. 1.9 - Оконное управление потоком

Квитанции либо содержатся в специальных управляющих пакетах, либо добавляются в обычные информационные пакеты. Управление потоком используется при передаче по одному виртуальному каналу, группе виртуальных каналов, управлению может подвергаться весь поток пакетов, возникающих в одном окне и адресованных другому узлу. Передатчиком и приемником могут быть два узла сети или терминал пользователя и входной узел сети связи. Единицами данных в окне могут быть сообщения, пакеты, кадры или символы.

Выделяют две стратегии: оконное управление от конца в конец и поузловое управление. Первая стратегия относится к управлению потоком между входным и выходными узлами сети для некоторого процесса передачи и часто реализуется в составе протоколов передачи файлов. Вторая стратегия относится к управлению потоком между каждой парой последовательных узлов и реализуется в составе протоколов канального уровня, таких как SDLC, HDLC, LAPB, LAPD, LAPM и других.


1.6. Классификация модемов

Строгой классификации модемов не существует и, вероятно, не может существовать по причине большого разнообразия как самих модемов, так и сфер применения и режимов их работы. Тем не менее можно выделить ряд признаков, по которым и провести условную классификацию. К таким признакам или критериям классификации можно отнести следующие: область применения; функциональное назначение; тип используемого канала; конструктивное исполнение; поддержка протоколов модуляции, исправления ошибок и сжатия данных. Можно выделить еще множество более детальных технических признаков, таких как применяемый способ модуляции, интерфейс сопряжения с DTE и так далее.


1.6.1. По области применения

Современные модемы можно разделить на несколько групп:

  • для коммутируемых телефонных каналов;
  • для выделенных (арендуемых) телефонных каналов;
  • для физических соединительных линий:
    - модемы низкого уровня (линейные драйверы) или модемы на короткие расстояния (short range modems);
    - модемы основной полосы (baseband modems);
  • для цифровых систем передачи (CSU/DSU);
  • для сотовых систем связи;
  • для пакетных радиосетей;
  • для локальных радиосетей.

Подавляющее большинство выпускаемых модемов предназначено для использования на коммутируемых телефонных каналах. Такие модемы должны уметь работать с автоматическими телефонными станциями (АТС), различать их сигналы и передавать свои сигналы набора номера.

Основное отличие модемов для физических линий от других типов модемов состоит в том, что полоса пропускания физических линий не ограничена значением 3,1 кГц, характерным для телефонных каналов. Однако полоса пропускания физической линии также является ограниченной и зависит в основном от типа физической среды (экранированная и неэкранированная витая пара, коаксиальный кабель и др.) и ее длины.

С точки зрения используемых для передачи сигналов модемы для физических линий могут быть разделены на модемы низкого уровня (линейные драйверы), использующие цифровые сигналы, и модемы с "основной полосой" (baseband), в которых применяются методы модуляции, аналогичные применяемым в модемах для телефонных каналов.

В модемах первой группы обычно используются цифровые методы биим-пульсной передачи, позволяющие формировать импульсные сигналы без постоянной составляющей и часто занимающие более узкую полосу частот, чем исходная цифровая последовательность.

В модемах второй группы часто используются различные виды квадратурной амплитудной модуляции, позволяющие радикально сократить требуемую для передачи полосу частот. В результате на одинаковых физических линиях такими модемами может достигаться скорость передачи до 100 Кбит/с, в то время как модемы низкого уровня обеспечивают только 19,2 Кбит/с.

Модемы для цифровых систем передачи напоминают модемы низкого уровня. Однако в отличие от них обеспечивают подключение к стандартным цифровым каналам, таким как Е1/Т1 или ISDN, и поддерживают функции соответствующих канальных интерфейсов.

Модемы для сотовых систем связи отличаются компактностью исполнения и поддержкой специальных протоколов модуляции и исправления ошибок, позволяющих эффективно передавать данные в условиях сотовых каналов с высоким уровнем помех и постоянно изменяющимися параметрами. Среди таких протоколов выделяются ZyCELL, ETC и MNP10.

Пакетные радиомодемы предназначены для передачи данных по радиоканалу между мобильными пользователями. При этом несколько радиомодемов используют один и тот же радиоканал в режиме множественного доступа, например, множественного доступа с контролем несущей, в соответствии с ITU-T АХ.25. Радиоканал по своим характеристикам близок к телефонному и организуется с использованием типовых радиостанций, настроенных на одну и ту же частоту в УКВ либо KB диапазоне. Пакетный радиомодем реализует методы модуляции и множественного доступа.

Локальные радиосети являются быстроразвивающейся перспективной сетевой технологией дополняющей обыкновенные локальные сети. Ключевым их элементом являются специализированные радиомодемы (адаптеры локальных радиосетей). В отличие от ранее упомянутых пакетных радиомодемов такие модемы обеспечивают передачу данных на небольшие расстояния (до 300 м) с высокой скоростью (2—10 Мбит/с), сопоставимой со скоростью передачи в проводных локальных сетях. Кроме того, радиомодемы локальных радиосетей работают в определенном диапазоне частот с применением сигналов сложной формы, таких как сигналы с псевдослучайной перестройкой рабочей частоты.


1.6.2. По методу передачи

По методу передачи модемы делятся на асинхронные и синхронные. Говоря о синхронном либо асинхронном методе передачи обычно подразумевают передачу по каналу связи между модемами. Однако передача по интерфейсу DTE—DCE также может быть синхронной и асинхронной. Модем может работать с компьютером в асинхронном режиме и одновременно с удаленным модемом — в синхронном режиме или наоборот. В таком случае иногда говорят, что модем синхронно-асинхронный или он работает в синхронно-асинхронном режиме.

Как правило, синхронизация реализуется одним из двух способов, связанных с тем, как работают тактовые генераторы отправителя и получателя: независимо друг от друга (асинхронно) или согласованно (синхронно). Если передаваемые данные составлены из последовательности отдельных символов, то, как правило, каждый символ передается независимо от остальных и получатель синхронизируется вначале каждого получаемого символа. Для такого типа связи обычно используется асинхронная передача. Если передаваемые данные образуют непрерывную последовательность символов или байтов, то тактовые генераторы отправителя и получателя должны быть синхронизированы в течение длительного промежутка времени. В этом случае используется синхронная передача.

Асинхронный режим передачи используется главным образом тогда, когда передаваемые данные генерируются в случайные моменты времени, например пользователем. При такой передаче получающее устройство должно восстанавливать синхронизацию в начале каждого получаемого символа. Для этого каждый передаваемый символ обрамляется дополнительным стартовым и одним или более стоповыми битами. Такой асинхронный режим часто применяется при передаче данных по интерфейсу DTE—DCE. При передаче данных по каналу связи возможности применения асинхронного режима передачи во многом ограничены его низкой эффективностью и необходимостью использования при этом простых методов модуляции, таких как амплитудная и частотная. Более совершенные методы модуляции, такие как ОФМ, КАМ и др., требуют поддержания постоянного синхронизма опорных тактовых генераторов отправителя и получателя.

При синхронном методе передачи осуществляют объединение большого числа символов или байт в отдельные блоки или кадры. Весь кадр передается как одна цепочка битов без каких-либо задержек между восьмибитными элементами. Чтобы принимающее устройство могло обеспечить различные уровни синхронизации, должны выполняться следующие требования:

  • Передаваемая последовательность битов не должна содержать длинных последовательностей нулей или единиц для того, что бы принимающее устройство могло устойчиво выделять тактовую частоту синхронизации.
  • Каждый кадр должен иметь зарезервированные последовательности битов или символов, отмечающие его начало и конец.

Существует два альтернативных метода организации синхронной связи: символьно- или байт-ориентированный, и бит-ориентированный. Различие между ними заключается в том, как определяются начало и конец кадра. При бит-ориентированном методе получатель может определить окончание кадра с точностью до отдельного бита, а байта (символа).

Кроме высокоскоростной передачи данных собственно по физическим каналам синхронный режим часто применяется и для передачи по интерфейсу DTE — DCE. В этом случае для синхронизации используются дополнительные интерфейсные цепи, по которым передается сигнал тактовой частоты от отправителя к получателю.


1.6.3. По интеллектуальным возможностям

По интеллектуальным возможностям можно выделить модемы:

  • без системы управления;
  • поддерживающие набор АТ-команд;
  • с поддержкой команд V.25bis;
  • с фирменной системой команд;
  • подерживающие протоколы сетевого управления.

Большинство современных модемов наделено широким спектром интеллектуальных возможностей. Стандартом де-факто стало множество АТ-команд, разработанных в свое время фирмой Hayes и позволяющее пользователю или прикладному процессу полностью управлять характеристиками модема и параметрами связи. По этой причине модемы, поддерживающие АТ-команды носят название Hayes-совместимых модемов. Следует заметить, что АТ-команды поддерживают не только модемы для КТСОП, но и пакетные радиомодемы, внешние адаптеры ISDN и ряд других модемов с более узкими сферами применения.

Наиболее распространенным набором команд, позволяющим управлять режимами установления соединения и автовызова являются команды рекомендации ITU-T V.25bis.

Специализированные модемы для промышленного применения часто имеют фирменную систему команд, отличную от набора АТ-команд. Причиной тому является большое различие в режимах работы и выполняемых функциях между модемами широкого применения и промышленными (сетевыми) модемами.

Промышленные модемы часто поддерживают протокол сетевого управления SMNP (Simple Manager Network Protocol), позволяющий администратору управлять элементами сети (включая модемы) с удаленного терминала.


1.6.4. По конструкции

По конструкции различают модемы:

  • внешние;
  • внутренние;
  • портативные;
  • групповые.

Внешние модемы Представляют собой автономные устройства, подключаемые к компьютеру или другому DTE посредством одного из стандартных интерфейсов DTE—DCE. Внутренний модем — это плата расширения, вставляемая в соответствующий слот компьютера. Каждый из вариантов конструктивного исполнения имеет свои преимущества и недостатки, которые будут расмотрены далее.

Портативные модемы предназначены для использования мобильными пользователями совместно с компьютерами класса Notebook. Они отличаются малыми габаритами и высокой ценой. Их функциональные возможности, как правило, не уступают возможностям полнофункциональных модемов. Часто портативные модемы оснащены интерфейсом PCMCIA.

Групповыми модемами называют совокупность отдельных модемов, объединенных в общий блок и имеющих общие блок питания, устройства управления и отображения. Отдельный модем группового модема представляет собой плату с разъемом, устанавливаемую в блок, и рассчитан на один или небольшое число каналов.


1.6.5. По поддержке международных и фирменных протоколов

Модемы также можно классифицировать в соответствии с реализованными в них протоколами. Все протоколы, регламентирующие те или иные аспекты функционирования модемов, могут быть отнесены к двум большим группам: международные и фирменные.

Протоколы международного уровня разрабатываются под эгидой ITU-T и принимаются им в качестве рекомендаций (ранее ITU-T назывался Международным консультативным комитетом по телефонии и телеграфии — МККТТ, международная абревиатура — CCITT). Все рекомендации ITU-T относительно модемов относятся к серии V. Фирменные протоколы разрабатываются отдельными компаниями — производителями модемов, с целью преуспеть в конкурентной борьбе. Часто фирменные протоколы становятся стандартными протоколами де-факто и принимаются частично либо полностью в качестве рекомендаций ITU-T, как это случилось с рядом протоколов фирмы Microcom. Наиболее активно разработкой новых протоколов и стандартов занимаются такие известные фирмы, как AT&T, Motorolla, U.S. Robotics, ZyXEL и другие.

С функциональной точки зрения модемные протоколы могут буть разделены на следующие группы:

  • протоколы, определяющие нормы взаимодействия модема с каналом связи (V.2, V.25);
  • протоколы, регламентирующие соединение и алгоритмы взаимодействия модема и DTE (V.10, V.11, V.24, V.25, V.25bis, V.28);
  • протоколы модуляции, определяющие основные характеристики модемов, предназначенных для коммутируемых и выделенных телефонных каналов. К ним относятся такие протоколы, как V.17, V.22, V.32, V.34, HST, ZyX и большое количество других;
  • протоколы защиты от ошибок (V.41, V.42, MNP1—MNP4);
  • протоколы сжатия передаваемых данных, такие как MNP5, MNP7, V.42bis;
  • протоколы, определяющие процедуры диагностики модемов, испытания и измерения параметров каналов связи (V.51, V.52, V.53, V.54, V.56);
  • протоколы согласования параметров связи на этапе ее установления (Handshaking), например V.8.

Приставки "bis" и "ter" в названиях протоколов обозначают, соответственно, вторую и третью модификацию существующих протоколов или протокол, связанный с исходным протоколом. При этом исходный протокол, как правило, остается поддерживаемым.

Некоторую ясность среди многообразия модемных протоколов может внести их условная классификация, приведенная на рис. 1.10.

Классификация модемных протоколов
Рис. 1.10 - Классификация модемных протоколов

Следует также заметить, что некоторые протоколы нельзя отнести только к одной из приведенных групп, так как они описывают реализацию ряда различных функций, например, таких как модуляция и коррекция ошибок. В первую очередь, это относится к фирменным протоколам (ZyCELL, MNP10 и другим).

Назад | Оглавление | Далее
Design by Graj © "ЦСС-ЕВРОКОМ"